

 R_{mk} $\overline{()}$ For P=(0,0) { $\overline{r} = 0$
(1) For P=(0,0) { \overline{O} is not (uniquely) defined. (2) Different conventions for ranges of r and θ re [0,00) or re \mathbb{R} \leftarrow our textbook $\theta \in [0, 2\pi)$ or $\theta \in \mathbb{R}$ In this course, we usually take $TE[0,00)$ and BER Change of coordinates formula $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$ $r = \sqrt{x^2 + y^2}$ $\theta = \tan^{-1}(\frac{y}{x})$ for x,y>0 Similar formula for Θ in other quodromts

$$
\frac{\partial bswvatim}{\partial t} : |t|_{boks} |t|_{k} = cmcl_{k} \rightarrow \text{yes}!
$$
\nNote $r = 4 \cos \theta \Rightarrow r^{2} = 4 r \cos \theta$

\n
$$
\Rightarrow x^{2} + y^{2} = 4 \times
$$
\n
$$
\Rightarrow (x-2)^{2} + y^{2} = 2^{2} \text{ (circle with radius } z)
$$
\nCheck of (2,0)

\nUse $r \cos(\theta - \frac{\pi}{4}) = \sqrt{2}$

\n
$$
= r \cos(\theta - \frac{\pi}{4}) = \sqrt{2}
$$
\n
$$
= r \left(\cos \theta \cos \frac{\pi}{4} + \sin \theta \sin \frac{\pi}{4}\right) \quad \theta = \frac{\pi}{4} \Rightarrow r = \sqrt{2}
$$
\n
$$
= \frac{r}{\sqrt{2}} \cos \theta + \frac{r}{\sqrt{2}} \sin \theta
$$
\n
$$
= \frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} y
$$
\n
$$
\therefore x + y = 2
$$
\nUse a line.

\nUse $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ is a point of $\frac{\pi}{4}$ and $\frac{\pi}{4}$ is a point of $\frac{\pi}{4}$ and $\frac{\pi}{4}$

l'internazionale della contra

$$
r \in [0, \infty) \text{ vs } r \in (-\infty, \infty)
$$
\nOur convention

\n
$$
3 \text{ The solution}
$$
\n
$$
(x, y) = (r \cos\theta, r \sin\theta)
$$
\n
$$
= (-|r| \cos\theta, -|r| \sin\theta)
$$
\n
$$
= -(|r| \cos\theta, |r| \sin\theta)
$$
\n
$$
= -(|r| \cos\theta, |r| \sin\theta)
$$
\n
$$
2 \text{ s.t. } r = -2, \theta = \frac{\pi}{6}
$$
\n
$$
\Rightarrow (x, y) = (-2 \cos\frac{\pi}{6}, -2 \sin\frac{\pi}{6}) = (-\frac{\pi}{13}, -1)
$$
\n
$$
y = \frac{y}{6}
$$
\n
$$
\Rightarrow (x, y) = (-\frac{y}{13}, -1)
$$
\n
$$
y = \frac{y}{6}
$$
\n
$$
\Rightarrow y = \frac{
$$

Fig. 1-
$$
a cos \theta
$$
, where $a > 1$ is a constant.

\nCase 1 If we require $r \ge 0$, then

\n
$$
1-a cos \theta \ge 0 \Rightarrow cos \theta \le \frac{1}{a} < 1
$$
\n
$$
\therefore \theta
$$
 cannot run through the whole interval $[0, 2\pi]$ but only $[S, 2\pi - S]$, where $S = cos^{-1}\frac{1}{a}$ and $\frac{1}{a}$ is $x = 1 - a cos \theta$ and $\frac{1}{a} < 1$.\nLet θ can run through $[0, 2\pi]$ and we get a smooth.

\nSelf-interacting curve

\n
$$
1 - a cos \theta
$$

Spherical Conditions
\nDescribe
$$
P \in \mathbb{R}^3
$$
 by
\n
$$
\int_{0}^{P} = \frac{distance}{x^2 + y^2 + z^2}
$$
\n
$$
\theta = \theta
$$
 as in cylindrical coordinates
\n
$$
\phi = angle from positive z-axis to \overrightarrow{OP}
$$
\n
$$
\frac{Rmk}{7}
$$

$$
\begin{array}{|l|}\n\hline\n\text{Formulas} \\
X = \rho \text{sn}\phi \text{cos}\theta \\
\psi = \rho \text{sn}\phi \text{sn}\theta \\
\hline\nZ = \rho \text{cos}\phi\n\end{array}
$$

let To^C IR ^E ⁰ Define Theinterior of S is theset and centered at $\overrightarrow{x_{0}}$. $B_{\epsilon}(x_{0}) = \{ \vec{x} \in \mathbb{R}^{n} : ||\vec{x}-\vec{x}_{0}|| \leq \epsilon \}$ $\bigwedge_{1 \leq i \leq n} \mathbb{E}_{2^{(2,2)}}$ $\overline{}$ l $\overline{B_{t}(2,-1)}$
Boundary included

 $Topological Terminology in \mathbb{R}^n | Define let $S \subseteq \mathbb{R}^n$. Define the following sets :$ $B_{\epsilon}(x_{0}) = \{ \vec{x} \in \mathbb{R}^{n} : ||\vec{x}-\vec{x}_{0}|| < \epsilon \}$ [nt (S) = $\{\vec{x} \in \mathbb{R}^{n} : B_{\epsilon}(x) \subset S \text{ for some } \epsilon > 0 \}$ = open ball with radius ϵ Points in Int(S) are called interior points of S. (3) The exterior of S is the set = $\frac{closed}{real}$ with radius ε $\Bigg\{ \begin{array}{l} \text{Ext}(S) = \{ \overline{x} \in \mathbb{R}^n : \overline{B}_{\varepsilon}(x) \subset \mathbb{R}^n \setminus S \text{ for some } \varepsilon > 0 \} \end{array} \Bigg\}$ and centered at $\overrightarrow{x_o}$. $\qquad \qquad$ \qquad \qquad (3) The boundary of S is the set B_{onndary} not $\partial S = \frac{1}{2} \vec{\chi} \in \mathbb{R}^n : B_{\epsilon}(x) \cap S \neq \emptyset$ included $B_{\epsilon}(x) \cap \mathbb{R}^{n} \setminus S \neq \emptyset$ for any $\epsilon > 0$ Points in ∞ are called <u>boundary points</u> of S.

A. C are boundary points of S B is an interior point of S D is an exterior point of S

$$
ER^{2}:1\n
$$
\begin{array}{c}\n\text{Prop }let S \subseteq R^{n}.\text{ Then} \\
\hline\n\text{Prop }let S \subseteq R^{n}.\text{ Thus} \\
\hline\n\text{Prop }let S \subseteq R^{n}.\text{ Then} \\
\hline\n\text{Prop }let S \subseteq R^{n}.\text{ Thus} \\
\hline\n\text{Prop }let S \subseteq R^{n}.\text{ Then} \\
\hline\n\text{Prop }let S \subseteq R^{n}.\text{ Thus} \\
\hline\n\text{
$$
$$

Rmk	
① There are exactly two subsets of IR which are both open and closed	
R^n and φ	$Let S \subseteq R^n$ be a sub- and closed
R^n and φ	$S \subseteq B_M(\overline{o}) =$ S is called <u>lowvded</u>
② Since subsets of R ⁿ are neither open or closed	$S \subseteq B_M(\overline{o}) =$ S is called <u>unbow</u>
② For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1}^{\infty} S_k$
③ For any $S \subseteq R^n$	$\bigcup_{k=1$

Rmk	
① There are exactly two subsets	True more definitions
① The area is a subset	
① R ⁿ which are both open	
② S is called <u>bounded</u> if $\exists M>0$ such that	
② S are a subset	
③ S is called <u>unbounded</u>	
③ S is not bounded	
③ S is a set	
② S are a subset	
③ S is a set	
① S is a set	
③ S is a set	
③ S is a set	
① S is a set	
④ S is a set	
① S is a set	
④ S is a set	
① S is a set	
③ S is a set	
④ S is a set	

(2) S is called path-connected if | Jordan Curve Theorem connected by a curve in S

any two points in S can be $\begin{array}{c|c} A \text{ simple closed curve in } \mathbb{R}^2 \text{ divides } \mathbb{R}^2 \text{.\n\end{array}$
connected by a curve in S into two path-connected components,

unbounded component

eg

